Monatshefte für Chemie 116, 1367-1376 (1985)

Die Kristallstruktur des Natriumorthogermanats, Na₄GeO₄

Erich Halwax* und Horst Völlenkle

Institut für Mineralogie, Kristallographie und Strukturchemie, Technische Universität Wien, A-1060 Wien, Österreich

(Eingegangen 19. Dezember 1984. Angenommen 14. Januar 1985)

The Crystal Structure of Sodium Orthogermanate, Na₄GeO₄

The crystal structure of the title compound has been determined from single crystal X-ray diffraction data and refined to R = 0.125. The unit cell is triclinic, space group P.Ī (No. 2), a = 5.688(1), b = 5.701(1), c = 8.583(1)Å, $\alpha = 81.32(1)$, $\beta = 71.50(1)$, $\gamma = 67.95(1)^{\circ}$ and Z = 2. The structure consists of isolated [GeO₄] tetrahedra linked together by four- and five-coordinate sodium atoms. Na₄GeO₄ is isostructural with Na₄CoO₄ (which has been described to be non-centrosymmetric and for which a centrosymmetric model is presented), K₄GeO₄, K₄SnO₄ and K₄PbO₄.

(Keywords: Sodium orthogermanate; Crystal structure)

Einleitung

Von den Orthogermanaten der Alkalimetalle sind bisher Li₄GeO₄, Na₄GeO₄ und K₄GeO₄ in der Literatur beschrieben worden¹⁻³. Während von der Lithium- und der Kaliumverbindung eine Strukturbestimmung vorliegt^{1,3}, waren von Na₄GeO₄ auf Grund von Untersuchungen an pulverförmigen Proben bislang nur die Zellparameter (triklin) und die Isotypie mit einer Reihe von Verbindungen der Zusammensetzung Na₄XO₄ (X = Si, Ti, Cr, Mn, Co, Sn, Pb) bekannt². Gleichzeitig wurde auf die mögliche Isotypie dieser Verbindungsreihe mit Verbindungen des Typs K₄XO₄ (X = Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb) hingewiesen. Die Pulverdiagramme konnten seinerzeit ausgehend von Einkristalldaten für K₄SnO₄, dessen Struktur bestimmt worden ist⁴, und den Zellparametern für Na₄SiO₄ indiziert werden, von dem eine Einkristalluntersuchung, jedoch keine Strukturbestimmung vorliegt⁵. Von den Verbindungen des Typs Na₄XO₄ wurde als erste die Struktur des Natriumorthocobaltats untersucht, für das die azentrische Raumgruppe P1 angegeben wird⁶, während K_4 GeO₄, K_4 SnO₄ und K_4 PbO₄⁷ in der zentrosymmetrischen Raumgruppe P I verfeinert worden sind.

Auf Grund der vorliegenden Arbeit ist auch Na_4GeO_4 zentrosymmetrisch und isotyp mit K_4GeO_4 , K_4SnO_4 und K_4PbO_4 . Darüber hinaus dürfte das in der Literatur azentrisch beschriebene Na_4CoO_4 ebenfalls derselben Strukturfamilie zuzuordnen sein.

Experimentelles

Die Darstellung der Verbindung Na₄GeO₄ gelang durch Umsetzen von Na₂GeO₃ mit NaOH. Das Natriummetagermanat wurde durch Aufschmelzen eines äquimolaren Gemenges von Na₂CO₃ wasserfrei (p. A., Fa. Merck) und GeO₂ (99.999%, Fa. Fluka, Quarzform) und anschließendes Tempern des Reaktionsproduktes bei 700 °C im Platintiegel erhalten. Für die Synthese des Orthogermanats wurde statt Platin das gegenüber alkalischen Schmelzen widerstandsfähigere Thoriumdioxid⁸ als Tiegelmaterial verwendet [ThO₂-Tiegel mit den Abmessungen $1/2 \times 1/2 \times 3/64$ in., erhältlich über die Fa. Micropure, Driebergen (Niederlande)]. Die fein gepulverte Probe aus Na₂GeO₃ und NaOH (p. A., Fa. Merck) im molaren Verhältnis 1:2 wurde bei 450 °C zur Reaktion gebracht (Haltezeit 10 min), bis über 1100 °C erhitzt und anschließend 15 Stunden bei 750 °C getempert.

Wegen des stark hygroskopischen Charakters von NaOH und Na₄GeO₄ mußten die präparativen Arbeiten in einer glove-box unter trockenem Stickstoff durchgeführt werden. Für die Einkristalluntersuchungen wurde aus dem spröden, leicht blaugrün gefärbten Schmelzkuchen ein geeignetes Kristallindividuum, das die Form eines dünnen Plättchens hatte, isoliert und in einer Kapillare aus Lindemannglas eingeschlossen.

Eine Drehkristallaufnahme (CuK α -Strahlung, Ni-Filter, Drehachse [$\overline{1}10$], Translationsperiode t = 6.37 Å) wies neben den scharfen Reflexen des Einkristalls eine Reihe schwacher Interferenzlinien eines polykristallinen Produkts auf, die auch auf der *Guinier*-Aufnahme von Na₄GeO₄ gefunden werden konnten (Tab. 1). Bei dieser Phase handelt es sich wahrscheinlich um ein durch Zersetzung gebildetes Hydrat, das jedoch nicht näher untersucht wurde.

Die Bestimmung der Gitterparameter sowie die Messung der Intensitäten erfolgte auf einem Vierkreisdiffraktometer (Philips PW 1100, MoK α -Strahlung, Graphitmonochromator). Die Zersetzung des Kristalls während der Datenkollektion wurde durch stündliche Messung dreier Referenzreflexe kontrolliert (ca. 13% Intensitätsverlust während der gesamten Meßzeit). Weitere Einzelheiten der Intensitätsmessung sind neben anderen Angaben Tabelle 2 zu entnehmen. Die angeführte Elementarzelle ist im reziproken Raum nach *Dirichlet* reduziert und ist identisch mit der reduzierten *Niggli*-Zelle⁹.

Bei der Umrechnung der Nettointensitäten in Strukturamplituden wurde die übliche Korrektur mit 1/Lp vorgenommen.

Ergebnisse

Die Struktur wurde mit direkten Methoden (MULTAN 78¹⁰, 180 normalisierte Strukturamplituden mit E > 1.46, 1500 \sum_{2} -Beziehungen, 8 Startreflexe) in der azentrischen Raumgruppe P1 bestimmt. Die statisti-

h k	l	d _{ber}	$d_{\rm beob}$	Ibeob	I _{ber}
0 0	1	8 130	8 140	800	2
	n n	5 282	5 285	222	10
	0	5.202	5.265	8	10
1 0	1	4.077	4.079	5 of	70
1 0	1	4.977	4,770	SL	17
1 1	0	4.547	4.526	mst	50
$\hat{0}$ $\hat{1}$	1	4.506	4.505	mst	52
01	1	4.360	4.359	mst	54
0 0	2	4.070	4.070	m	25
1 0	1	3.834	3.833	mst	46
1 0	2	3.731	3.734	SS	6
Î Î	2	3.577	3.577	m	36
-1 -1	1	3.549	3.549	m	22
$\hat{0}$ $\hat{1}$	$\hat{2}$	3.281	3.280	S	7
01	$\overline{2}$	3,169	3,172	S	9
-1 1	õ	3 144	3 145	ms	17
11	ĩ	3.100	3.099	ms	13
1 2	1	2.795	2.794	s	9
1 1	1	2.791)	2 729	100	26
	2	2.737	2.730	111	50
	2	2.091	2.091	1115	15
11	2	2.073 (2.671	mst	61
-1 - 1 0 2	ก็	2.641)			
2 0	ĭ	2.636	2.638	sst ^b	100
$\frac{1}{1}$ 2	2	2.531)	0.501		
$\frac{1}{2}$ $\frac{1}{0}$	ō	2.528	2.531	SS	4
0 -2	1	2.486	2 181	ma	12
12	1	2.481∫	2.464	1115	15
0 1	3	2.450	2.450	ms	12
2 2	1	2.362	2.362	st ^b	71
-1 1	2	2.320	2.320	st	71
2 1	3	2.308	2.308	SS	5
2 2	2	2.274	2.273	SS	5
1 1	3	2.233	2.233	st	68
1 2	3	2.160	2.159	m	23
-1 -2	2	2.109	2.108	SS	4
	4	2.1073	2:002	122.2	11
	4	2.093	2.095	1115	2
2 - 1	1	2.008	2.070	22	5
-2 -2 -2 -2 -0 -0	4	2.030	2.036	8	9
2 —1	2	1.988	1.987	s	8
2 1	4	1.946	1.947	SS	5
-2 0	2	1.917)			
$-\overline{1}$ 1	3	1.912	1.914	s(b)	12
1 -2	2	1.910)		- (-)	
2 1	1	1.871	1.871	SS	4
$\begin{array}{ccc} 2 & 0 \\ 0 & 2 \end{array}$	4	1.866	1.861	s	4
0Z	2	1.0.27 J			

Tabelle 1. Auswertung eines Guinier-Diagramms von Na₄GeO₄: P Ī, a = 5.691(1), b = 5.703(1), c = 8.589(2)Å, $\alpha = 81.32(1)$, $\beta = 71.49(1)$, $\gamma = 67.94(1)^{\circ}$, $\lambda = 1.54051$ Å; die Gitterparameter wurden mit dem Programm LATCON (X-ray 76²¹) verfeinert^a; kein innerer Standard

Tabelle 1 (Fortsetzung)

h k l	$d_{\rm ber}$	d_{beob}	I _{beob}	Iber
2 3 1	1 813	1 912	0	7
$\frac{2}{3}$ $\frac{3}{2}$ $\frac{1}{2}$	1.700	1.812	mab	7
2 2 4	1.799	1.800	1115	4
-1 $\frac{2}{2}$ $\frac{2}{2}$	1.778)	1.705	33	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.776	1.778	s(b)	13
-2 -2 2	1.775			
$\begin{array}{cccc} 3 & 2 & 0 \\ 1 & 2 & 2 \end{array}$	1.719	1.719	S	10
1 - 2 - 3 1 0 5	1./1/)	1 607		5
1 0 3 2 0 0	1.09/	1.097	SS	3
3 0 0	1.000	1.000	SS	6
	1.00/	1.009	SS	0
	1,001	1.001	S	22
-3 -1 1 -2 -3 1	1.649	1.650	m	32
$ \frac{2}{2} $ $ \frac{1}{1} $ $ \frac{5}{5} $	1.643	1.642	ms	16
0 2 4	1.641			
0 0 5	1.628	1 627	me	14
3 1 4	1.626	1.027	113	14
2 -1 -1 -3 -2 -1 -4	1.618	1.620	m	36
2 - 2 1	1.590	1 591	m	37
2 0 5 0 -2 4	1.590)	1.091		57
3 2 4	1.580	1.581	ms	16
0 1 5	1.572	1.572	ms	14
1 2 5 0 - 1 5	1.540	1.541	s	10
3 0 4	1.529	1.528	s	7
2 3 4	1.520			
1 - 2 4	1.517 }	1.518	s (b)	11
3 - 1 1	1.505)			
0 3 3	1.502 }	1.503	s (b)	7
-2 2 1	1,501			
3 - 1 2	1.495	1 402	a (h) b	4
-2 -3 2 1 3 4	1.494	1.493	s(b)°	4
3 1 5	1.457	1 455	(1) b	-
0 - 3 3	1.453∫	1.455	m (b) ⁰	5

sst = sehr stark, st = stark, mst = mittelstark, m = mittel, ms = mittelschwach, s = schwach, ss = sehr schwach, sss = sehr sehr schwach, b = schwach, bbreit.

^a Zum Vergleich die von *Olazcuaga* et al.² aus einer *Debye-Scherrer*-Aufnah-me abgeleiteten Zellparameter (nach Transformation mit $\overline{10}$ $\overline{1/1}$ 00/010: a = 5.68, b = 5.72, c = 8.57Å, $\alpha = 81.1, \beta = 71.5, \gamma = 67.7^{\circ}$. ^b Koinzidenz mit Linien einer unbekannten Phase, die auch auf einer

Drehkristallaufnahme von Na4GeO4 gefunden wurden.

Raumgruppentyp	P 1 (Nr. 2)
Kristallabmessungen [mm]	$0.27 \times 0.23 \times 0.04$
aſÅŢ	5.688(1)
<i>b - - - - - - - - - -</i>	5.701 (1) verfeinert mit
С	8.583(1) dem Programm
α[°]	81.32(1) PARAM (X-ray 76 ²¹)
β^{-}	71.50(1)
γ	67.95(1)
$V[Å^3]; Z$	244.5(1); 2
$D_{\rm x} [\rm gcm^{-3}]$	3.105
ω -Bereich ($\omega/2\theta$ -scans)	2–30 (MoKα)
gemessene Reflexe (Halbkugel: $h \ge 0$)	1 556
symmetrieunabhängige Reflexe	1 421
Verfeinerungsmethode	full-matrix least squares,
-	alle Atome isotrop
Zahl der verfeinerten Parameter	37
mit $F_0 \ge 6 \sigma(F_0)$ in die Verfeinerung	
einbezogene Reflexe	1 1 1 9
Gewichtsschema	$w = 1/[\sigma^2(F_0) + 0.0238 F_0^2]$
$R; R_w$	0.125; 0.147

E. Halwax und H. Völlenkle: Kristallstruktur von Na₄GeO₄ Tabelle 2. Kristallographische Daten für Na₄GeO₄; Einzelheiten der Intensitätsmessung und Angaben zur Verfeinerung

Tabelle 3. Ortsparameter und isotrope Temperaturkoeffizienten für Na₄GeO₄, Raumgruppentyp P 1; Standardabweichungen der letzten Dezimalen in Klammern

Atom	x	у	Ζ	$U/{ m \AA^2}$
NL-(1)	0.440(1)	0.729.(1)	0.1052(()	0.014(1)
Na(1)	0.449(1)	0.738(1)	0.1053(6)	0.014(1)
Na(2)	0.740(1)	0.258(1)	0.4845(6)	0.014(1)
Na(3)	0.895(1)	0.770(1)	0.3226(6)	0.015(1)
Na(4)	0.981(1)	0.236(1)	0.0635(6)	0.013(1)
Ge	0.3436(2)	0.2217(2)	0.2550(1)	0.0063(4)
O(1)	0.140(2)	0.036(2)	0.306(1)	0.010(2)
O(2)	0.204(2)	0.472(2)	0.124(1)	0.011(2)
O(3)	0.355 (2)	0.352(2)	0.424(1)	0.014(2)
O(4)	0.664 (2)	0.033 (2)	0.139(1)	0.013 (2)

sche Verteilung der E-Werte und der N(z)-Test lieferten keinen eindeutigen Hinweis auf das Vorliegen eines Symmetriezentrums. Im Zuge der weiteren Rechnungen (SHELX 76¹¹) wurde die Struktur jedoch auf Grund der hohen Korrelation zwischen den äquivalenten Lagen der weitgehend zentrosymmetrischen Atomverteilung in der Raumgruppe PI weiterverfeinert. Nähere Angaben zur Verfeinerung finden sich in Tabelle 2.

Symmetriecode:	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(V) $1-x, 1-y, 1-z$ (VI) $1+x, 1+y, z$ (VII) $2-x, -y, -z$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} O(1) & -Ge & -O(2) & 105.0 (4) \\ O(1) & -Ge & -O(3) & 114.4 (4) \\ O(1) & -Ge & -O(4) & 107.7 (4) \\ O(2) & -Ge & -O(3) & 109.0 (4) \\ O(2) & -Ge & -O(4) & 108.2 (4) \\ O(3) & -Ge & -O(4) & 112.2 (4) \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{rrrr} Na(4) & - O(2)^{II} & 2.33 (1) \\ Na(4) & - O(2)^{III} & 2.37 (1) \\ Na(4) & - O(4) & 2.37 (1) \\ Na(4) & - O(4)^{VII} & 2.39 (1) \\ Na(4) & - O(1)^{III} & 2.48 (1) \\ Mittel & 2.39 \end{array}$

Tabelle 4. Abstände [Å] und Winkel [°] in der Struktur von Na₄GeO₄, Standardabweichungen der letzten Dezimalen in Klammern

Die Koeffizienten für die analytische Darstellung der Streukurven (neutrale Atome) sowie Real- und Imaginärteil der Korrekturterme für anomale Dispersion sind den International Tables for X-ray Crystallography¹² entnommen.

Die Atomparameter der verfeinerten Struktur sind in Tabelle 3, wichtige Abstände und Winkel in Tabelle 4 zusammengestellt.

Diskussion

Die Struktur des Na_4GeO_4 ist aus isolierten [GeO₄]-Tetraedern aufgebaut, die über [NaO₄]- und [NaO₅]-Gruppen miteinander verknüpft sind (Abb. 1). Eine Dichtestpackung der Sauerstoffatome, wie sie annähernd in der analogen Lithiumverbindung (mit ausschließlich tetraedrischer Koordination des Lithiums) realisiert ist¹³, liegt nicht vor. Der mittlere Ge—O-Abstand entspricht mit 1.769 Å den Werten in $Li_4GeO_4^{-1}$ und $K_4GeO_4^{-3}$ und ist erwartungsgemäß größer als in anderen Germanaten der Alkalimetalle mit vernetzten [GeO₄]-Tetraedern: für die [Ge₂O₇]-Gruppe in $Li_6Ge_2O_7^{-13}$ beträgt er 1.762 Å, in den Zweiereinfachketten der Metagermanate Li_2GeO_3 , Na₂GeO₃, NaKGeO₃ und K₂GeO₃⁻¹⁴⁻¹⁷ liegt er — gemittelt über acht Tetraeder — bei 1.754 Å.

Abb. 1. Projektion der Struktur von Na₄GeO₄, Blickrichtung \ddot{a} ; die Pfeile weisen auf um \ddot{a} verschobene Sauerstofflagen hin

Die Natriumatome Na(2) und Na(3) sind von Sauerstoff annähernd tetraedrisch koordiniert [Winkel \neq (ONaO) 88.1–123.5 und 93.4– 122.2°]. Der Mittelwert der Na–O-Abstände (2.33 Å) stimmt mit Beispielen aus der Literatur für Na in 4-Koordination überein (2.319 Å in Na₂ZnSiO₄¹⁸; 2.34 Å in Na₂Zn₃[SiO₄]₂¹⁹). Das Koordinationspolyeder um Na(1) kann näherungsweise als ein entlang einer 4-zähligen Drehinversionsachse gestauchtes Tetraeder mit einem zusätzlichen Liganden auf dieser Achse beschrieben werden, die Koordination um Na(4) entspricht einer etwas deformierten tetragonalen Pyramide. Der mittlere Na–O-Abstand für Na(1) und Na(4) steht mit 2.40 Å im Einklang mit bekannten Werten für Na in 5-Koordination (2.398 Å in Na₂GeO₃¹⁵; 2.404 Å in

Verbindung	Gitterpa [Å] bz	rameter zw. [°]	Zellvolumen [Å ³]	Transformations- matrix M
Na ₄ SiO ₄ ⁵	a' 5.59 b' 5.58 c' 8.51	$\alpha' 84.1 \beta' 69.5 \gamma' 67.4$	229.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Na ₄ GeO ₄	5.688 5.701 8.583	81.32 71.50 67.95	244.5	-
Na ₄ CoO ₄ ⁶	5.724 5.702 8.648	80.8 71.5 68.1	248.1	$\begin{array}{cccc} 0 & 1 & 1 \\ 0 & 1 & 0 \\1 & 0 & 0 \end{array}$
K ₄ GeO ₄ ³	6.406 6.339 9.337	80.26 72.42 66.37	330.6	$\begin{array}{cccc} 0 & -\!\!\!-\!\!\!1 & -\!\!\!1 \\ 0 & 0 & -\!\!\!\!1 \\ 1 & 0 & 0 \end{array}$
K ₄ SnO ₄ ⁴	6.51 6.48 9.70	80.1 71.8 66.9	357.0	$\begin{array}{cccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}$
K ₄ PbO ₄ ⁷	6.586 6.584 9.866	79.74 71.55 67.51	374.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabelle 5. Gitterparameter der Orthoverbindungen Na_4XO_4 (X = Si, Ge, Co) und K_4XO_4 (X = Ge, Sn, Pb). Die Elementarzellen sind einheitlich auf die Zelle von Na_4GeO_4 entsprechend $\mathbf{a}' = \mathbf{M} \cdot \mathbf{a}$ transformiert (a Spaltenmatrix der Translationsvektoren a, b, c)

NaKGe O_3^{16}). Die Sauerstoffatome O(1), O(2) und O(4) sind annähernd oktaedrisch koordiniert (1 Ge + 5 Na), während O(3) von 1 Ge- und 3 Na-Atomen in Form eines stark deformierten Tetraeders umgeben ist.

Vergleich der Struktur von Na₄GeO₄ mit bekannten Strukturen von Verbindungen des Typs Na₄XO₄ und K₄XO₄

Die Isotypie einer Reihe von Orthoverbindungen des Natriums mit den analogen Kaliumverbindungen war bisher auf Grund von Untersuchungen an pulverförmigen Proben vermutet worden². Zur Klärung dieser Frage wurden für Na₄GeO₄, Na₄CoO₄, K₄GeO₄, K₄SnO₄ und K₄PbO₄ die Ortsparameter der Atome und die Koordinationsverhältnisse der Alkalimetallatome miteinander verglichen.

Für das von Jansen⁶ azentrisch beschriebene Natriumorthocobaltat wurde ein zentrosymmetrisches Modell verwendet. Der Ursprung der zentrosymmetrischen Elementarzelle wurde als gewichtetes Mittel der Schwerpunkte der Paare symmetriekorrelierter Atome erhalten, wobei als Gewicht der Reziprokwert des Quadrats des mittleren Fehlers der Ortsparameter diente. Die Differenzen zwischen den neu berechneten zentrischen und den ursprünglichen azentrischen Koordinaten⁶ betragen im Mittel 0.048 Å mit einem Maximalwert von 0.083 Å.

Die Elementarzellen wurden einheitlich auf die Zelle von Na4GeO4 (reduzierte Basis, Typ I²⁰) transformiert (Tab. 5) und die Ortsparameter auf den gleichen Ursprung bezogen. Die Alkalimetallatome sind in allen erwähnten Orthoverbindungen gegenüber Sauerstoff 4- und 5-koordiniert, nur in K₄GeO₄ weisen zwei Atome - K(1) und K(3) - eine um 1 höhere Koordinationszahl auf als die entsprechenden Atome in den übrigen Strukturen. Daraus ergeben sich auch zwangsläufig Unterschiede in der Umgebung der Sauerstoffatome: in K₄GeO₄ ist ein Sauerstoff ----O(3) — höher koordiniert (1 Ge + 5 K) als die entsprechende Sauerstofflage in den übrigen Verbindungen (1 X + 3 M). Die drei anderen Sauerstofflagen dagegen weisen in allen Strukturen einheitlich die Koordination 1X + 5M auf.

Dank

Unser Dank gilt dem Interfakultären Rechentrum der Universität und der Technischen Universität Wien für die Rechenzeit und dem Fonds zur Förderung der wissenschaftlichen Forschung für die finanzielle Unterstützung bei der Anschaffung des Vierkreisdiffraktometers (Projekt Nr. 2178).

Literatur

- ¹ Völlenkle H., Wittmann A., Z. Kristallogr. 128, 66 (1969).
- ² Olazcuaga R., Reau J.-M., Devalette M., Le Flem G., Hagenmuller P., J. Solid State Chem. 13, 275 (1975).
- ³ Nowitzki B., Hoppe R., Z. anorg. allg. Chem. **505**, 105 (1983). ⁴ Marchand R., Piffard Y., Tournoux M., Acta Crystallogr. **B31**, 511 (1975).
- ⁵ Kautz K., Müller G., Schneider W., Glastechn. Ber. 43, 377 (1970).
- ⁶ Jansen M., Z. anorg. allg. Chem. 417, 35 (1975).
- ⁷ Brazel B., Hoppe R., Z. anorg. allg. Chem. 505, 99 (1983).
- ⁸ Lux H., Renauer R., Betz E., Z. anorg. allg. Chem. 310, 305 (1961).
- ⁹ Křivý I., Gruber B., Acta Crystallogr. A 32, 297 (1976).
- ¹⁰ Main P., MULTAN 78. A system of computer programmes for the automatic solution of crystal structures from X-ray diffraction data. York: University of York. 1978.
- ¹¹ Sheldrick G. M., SHELX 76. Program for crystal structure determination. Cambridge: University of Cambridge. 1976.
- ¹² International Tables for X-ray Crystallography, Vol. IV. Birmingham: The Kynoch Press. 1974.
- ¹³ Völlenkle H., Z. Kristallogr. 153, 131 (1980).
- ¹⁴ Völlenkle H., Z. Kristallogr. 154, 77 (1981).

1376 E. Halwax und H. Völlenkle: Kristallstruktur von Na₄GeO₄

- ¹⁵ Cruickshank D. W. J., Kálman A., Stephens J. S., Acta Crystallogr. B 34, 1333 (1978).

- ¹⁶ Halwax E., Völlenkle H., Z. Kristallogr. (im Druck).
 ¹⁷ Halwax E., Völlenkle H., Z. Kristallogr. (im Druck).
 ¹⁸ Plakhov G. F., Belov N. V., Sov. Phys. Crystallogr. 24, 674 (1979).
 ¹⁹ Plakhov G. F., Simonov M. A., Belov N. V., Sov. Phys. Crystallogr. 20, 24 (1975).
 ²⁰ International Tables for Crystallography, Vol. A. Dordrecht: D. Reidel. 1983.
 ²¹ Crystallography, Vol. A. Dordrecht: D. Reidel. 1983.
- ²¹ Stewart J. M., The X-ray system of crystallographic programs. Technical report TR-445, University of Maryland. 1976.